
Crash Narratives and Predictability

John Cotter∗ Richard McGee∗ Xiaomeng Wang∗

Abstract

This paper documents the superior predictive power of recently proposed Crash Narra-

tives for US stock market volatility. Compared to other volatility predictors, Crash Narra-

tives are found to perform better during periods of high volatility and NBER recessions.

They also contribute to producing accurate out-of-sample forecasts of the conditional

variance. By employing the conditional variance forecasts based on Crash Narratives, we

reexamine the strong return predictability of the variance risk premium, and develop a

notably profitable volatility-managed portfolio strategy. This strategy outperforms the

traditional volatility-managed portfolio and buy-and-hold strategies, yielding higher ac-

cumulative returns, larger alphas, and improved Sharpe ratios.
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1 Introduction

Understanding how market crash concerns influence market volatility is crucial for investors

when developing risk management and portfolio strategies. Traditionally, market crash con-

cerns have been quantified mainly through option-based tail-risk measures (Andersen et al.,

2021; Bollerslev et al., 2011, 2015). However, a significant gap remains between these tra-

ditional measures of extreme crash concerns and the real concerns of average investors, as

traditional economic and stock market data often fail to capture or retain rapidly changing

sentiments (Manela and Moreira, 2017). In contrast, concerns about stock market crashes

are persistently reported in financial newspapers, providing an alternative data source for

measuring these concerns.

Goetzmann et al. (2022) have introduced a new approach to narrow this gap: a high-order

measure of Crash Narratives extracted from Wall Street Journal (WSJ) news articles. In this

paper, we conduct an empirical analysis to evaluate the relative importance of Crash Narra-

tives in predicting US stock market volatility. Specifically, we compare Crash Narratives with

three types of predictors, including tail risk measures, text-based volatility measures, and un-

certainty measures. To further explore their practical implications, we examine whether this

new measure improves the out-of-sample forecast of conditional variance, the performance of

volatility-managed portfolios, and the predictability of the variance risk premium on market

excess return. 1

We begin with the assumption that the time variation in Crash Narratives extracted from

the business press is a good proxy for the evolution of investors’ concerns about market crashes.

The timeliness and rich narrative content of business news data are significant advantages over

standard financial data sets. These advantages arise from sophisticated human processing of

complex contexts. In comparison with traditional measurements of crash concerns, narratives

are non-parametric and not limited by strict model assumptions, when utilized to identify

investors’ beliefs. Natural Language Processing methods can uncover information from this

rich and unique text data set. Crash Narratives are measured by semantic similarities be-

1We also replicate Crash Narratives constructed by the Financial Times news articles and a combination of
the Wall Street Journal and Financial Times articles. We also examine their predictability and obtain similar
results, which are available on request.
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tween news articles and articles published in a window around the 1987 US market crash,

using the Doc2Vec model. The key advantage of this high-dimensional semantic space model

is its ability to extract information from unstructured data.

In existing asset pricing papers, market crash concerns, typically measured by tail-risk

measures, have been shown to predict market volatility (Wachter, 2013). Unlike traditional

tail-risk measures, which are empirically estimated through complex procedures using option

data, Crash Narratives measure the recall of the pivotal historical market crash (1987 Crash)

in the financial press. These indices rise in response to reporting around disturbances (e.g.

stock market crashes, wars, significant international political events, and financial crisis), as

stories are fundamentally concerned with state changes intermediated by crash events (Bybee

et al., 2024; Goetzmann et al., 2022). Disaster models illustrate that state changes lead to

variations in market volatility (Gabaix, 2012; Gourio, 2012; Wachter, 2013). Motivated by

these papers, we study whether fluctuations in Crash Narratives encode information about

future market volatility.

We find that Crash Narratives effectively predict future market volatility. More impor-

tantly, our paper is the first to shed light on the outperformance of Crash Narratives relative

to alternative text-based volatility measures, traditional tail risk measures, and uncertainty

measures. We demonstrate that the superior predictive power of Crash Narratives is primar-

ily due to their stronger performance during periods of high volatility and the NBER recession.

Our work has three main contributions: first, we offer a more accurate estimate of the

Conditional Variance: we include Crash Narratives in the Conditional Variance forecast model

from Corsi (2009): a Heterogeneous Autoregressive model. We find that integrating Crash

Narratives markedly improves the accuracy of Conditional Variance forecasts. The out-of-

sample Mean Absolute Error (MAE) of the forecasting model with Crash Narratives decreased

by approximately 10% compared to the non-estimated model.

Second, we construct portfolios that scale monthly returns by the inverse of their con-

ditional variance. These volatility-managed SP500 portfolios decrease risk exposure during
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periods of high conditional variance and vice versa. We find that the performance of these

portfolios can be improved using the conditional variance forecasting models with Crash Nar-

ratives. Among a group of volatility-managed portfolios, Crash Narratives-based trading

strategies produce the largest alpha (10.1%) and the highest annualized Sharpe ratio (around

1). We begin with an investment of $1 in 2006. By December 2023, the volatility-managed

S&P 500 portfolios, on the basis of the conditional variance estimated from Crash Narratives,

accumulated to approximately $15—an improvement of at least 50% compared to all other

strategies.

Third, we estimate the variance risk premium using the conditional variance forecast de-

rived from Crash Narratives. Our new proxy demonstrates superior forecasting power for

short-term returns, with the Adjusted R2 increasing by about 3%. The strong predictability

of the variance risk premium lends credence to the asset pricing framework of Bollerslev et al.

(2009) and Campbell and Cochrane (1999); and Drechsler and Yaron (2011), which attributes

variations in equity risk premiums to counter-cyclical shifts in risk aversion.

This paper relates and contributes to three strands of literature. The first pertains to

both empirical and theoretical research on measuring market crash concerns. Estimating the

fear of disasters is challenging, but crucial because these rare events can significantly influence

investors’ beliefs about the stock market and therefore shape their investment strategies. It

has been documented that market participants, including institutional investors, pay a “fear

premium” to insure against disaster shocks in asset pricing (Barro, 2006; Bollen and Whaley,

2004; Bollerslev and Todorov, 2011; Driessen and Maenhout, 2007; Gourio, 2012; Han, 2008;

Rietz, 1988; Wachter, 2013; Welch, 2016).

Recent years have witnessed significant evolution in research on measuring market crash

concerns, with various methodologies reflecting the complex and diverse nature of market

sentiment. A significant segment has focused on tail-risk measures (Andersen et al., 2015;

Bollerslev and Todorov, 2011; Bollerslev et al., 2015; Drechsler, 2013; Gao et al., 2019; Kelly

and Jiang, 2014; Wachter, 2013). For example, Left Tail Volatility, developed by Bollerslev

et al. (2015), always serves as an important indicator for market crash concerns. Specifically,
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it measures the expected (risk-neutral) return volatility due to a ten-standard deviation or

larger downward move in the S&P 500 Index within a one-week period. However, these tail

risk measures cannot comprehensively and timely capture crash concerns of most market par-

ticipants, stemming from the fact that market crash concerns are determined by events whose

heterogeneous nature varies depending on the period considered and are characterized by a

non-uniform and unknown distribution among economic agents (Baker et al., 2021; Manela

and Moreira, 2017).

More recently, the role of media narratives in shaping market concerns has gained promi-

nence. Shiller (2014) proposes that the market fluctuates with different mindsets and that

the aggregate price changes in the stock market reflect differing perceptions. Shiller (2017)

coined the term “narrative economics” to describe the study of how stories, explanations and

justifications of events we tell ourselves and others shape individuals’ behaviors and their

decision-making and drive economic fluctuations. He references the narrative concerning the

stock market collapse on 28 October 1929 as a crash narrative, marking it as the inaugural

narrative of the Great Depression. Baker et al. (2021) illustrates that newspaper articles

mirror these mindsets and their shifts over time, and they drive market volatility. The de-

velopment of Natural Language Processing has stimulated the use of analytical methods to

detect degrees of “narrativity”. A few papers have thus far applied language processing tools

to explore narratives from financial news (Bertsch et al., 2021; Bybee et al., 2023). Dierckx

et al. (2021) demonstrate that a novel topic model, which combines Doc2Vec and Gaussian

mixture models, outperforms the Latent Dirichlet Allocation (LDA) approach in VIX pre-

diction. Goetzmann et al. (2022) quantify the crash narrative based on newspaper articles

published after global market crashes using high-dimensional semantic space models and use

the crash narrative to measure market crash concerns.

Second, a large and fruitful literature focuses on improving the accuracy of volatility fore-

casts by adding new predictors, such as macroeconomic variables (Chiu et al., 2018; Conrad

and Loch, 2015a, 2015b; Engle et al., 2013; Paye, 2012), sentiment indices (Lee et al., 2002;

Seo and Kim, 2015), textual measures (Behrendt and Schmidt, 2018) and uncertainty mea-

sures (Asgharian et al., 2023; Goodell et al., 2020) and CBOE volatility index (Fernandes et
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al., 2014). For example, Equity Market Volatility is a news-based volatility measure derived

from articles about stock market volatility in leading US newspapers, as proposed by Baker

et al. (2021). Economic Policy Uncertainty, developed by Baker et al. (2016), is a news-based

measure that quantifies the coverage of policy-related economic uncertainty in ten major US

newspapers. Macroeconomic Uncertainty Index captures uncertainty about future macroeco-

nomic conditions (Jurado et al., 2015; Ludvigson et al., 2021). Previous research has shown

that all of these measures provide significant predictive power for market volatility (Fang

et al., 2020; Li et al., 2023; Ma et al., 2022, 2023; Su et al., 2017). Our contribution is to be

the first to use Crash Narratives to predict realized volatility.

Broadly, our paper contributes to the rapidly growing literature on text-based methods to

measure a variety of outcomes and understand asset markets (Baker et al., 2016; Jeon et al.,

2022; Ke et al., 2020; Manela and Moreira, 2017). Several textual analysis approaches are used

to quantifying information from news articles. A popular approach is to create a topic-specific

compound full-text search statement and then to count the resulting number of articles nor-

malized by a measure of normal word count. This creates a univariate time series that can be

used in a least squares regression analysis. A key advantage of this method is that articles are

highly likely to be pertinent to the topic of interest. However, this approach depends heavily

on the judgement of the econometrician, since the selection of key words for specific topics is

determined by them. Two leading examples of this approach are the news-based Economic

Policy Uncertainty Index (EPU) by Baker et al. (2016) and the Equity Market Uncertainty

(EMV) index proposed by Baker et al. (2021). The second approach uses machine learn-

ing models to estimate the relationship between news coverage and market volatility. This

method addresses the challenge of effectively managing the large dimensionality of the feature

space, allowing the data to inform the analysis with minimal human intervention. Manela

and Moreira (2017) utilized this approach to develop a monthly news-based implied volatility

(NVIX) measure using abstracts and headlines from front-page articles of the Wall Street

Journal. However, a potential drawback is its reliance on a relatively small text corpus. Our

Natural Language Processing approach not only lets the data speak for itself (not rely on the

econometricians’ key words selection and judgment), but also depends on larger text corpus

(the full text and all news articles related to a stock market).

6



The paper proceeds as follows. Section 2 describes the data used to construct Crash Nar-

ratives, and to calculate realized volatility, as well as alternative volatility predictors. Section

3 constructs Crash Narratives and shows their summary statistics and time-series properties.

Section 4 tests the hypothesis that Crash Narratives are important predictors of market real-

ized volatility, and explores the predictability of Crash Narratives compared to several other

predictors. Section 5 estimates the Conditional Variance using models with Crash Narratives;

constructs volatility-managed portfolios based on Crash Narratives; and assesses the Variance

Risk Premium’s predictability on market excess return. Section 6 concludes.

2 Data

In this section, we present the data used to construct Crash Narratives, and to calculate our

realized volatility measure. We also introduce alternative volatility predictors for comparative

analysis.

2.1 News Data

Our daily Crash Narratives indexes are based on one leading financial newspaper: the Wall

Street Journal (WSJ). We search the digital archives of the WSJ to obtain articles that con-

tain the ”stock market” or are categorically tagged under the subject ”stock market”.

Following the method from Goetzmann et al. (2022), we use the ProQuest database to

conduct a search within the Wall Street Journal (WSJ) spanning 31 May 1996, through 31

December 2023 2. This search yields a total of 154989 articles. Given the limitation of the

search term regarding a word count restriction, we further devise a filter to select articles

encompassing no less than 200 words. We download the full text of these articles, including

their headlines, lead paragraphs, and topic tags. Articles from 1 October 1987 to 31 October

1987 are downloaded from the Factiva database, as WSJ news articles prior to 31 May 1996

are not accessible in our ProQuest database 3

2The search term for the WSJ is: (((stock NEAR/5 market) OR SU(stock) AND WC > 200 OR
SU(securities)) AND la.exact(”English”)) AND (publication.exact(”Wall Street Journal”) AND bdl(1000001)).

3These articles are acquired from the Factiva Database using the search term: stock NEAR5 market and
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2.2 Stock Market Data and Alternative Volatility Predictors

For the stock market data, we download the daily SP500 index from 31 May 1996 to 31 De-

cember 2023. The monthly realized volatility is calculated as the square root of the sum of

the squared daily SP500 returns within a month.

For comparison, we apply several alternative text-based volatility measures, traditional

tail-risk measures, and uncertainty measures as volatility predictors, as shown in Table 1.

[Insert Table 1 here]

Both Equity Market Volatility and Economic Policy Uncertainty from 31 May 1996 through

31 December 2023 are downloaded from Economic Policy Uncertainty’s website. Left-Tail

Volatility is acquired from the Chicago Board Options Exchange for the period from 31

May 1996 through 31 December 2023. Macroeconomic Uncertainty Index from 31 May 1996

through 31 December 2023 is available from Ludvigson’s website. 4

3 Construction of Crash Narratives

3.1 Construction Methodology

We follow Goetzmann et al. (2022), who assume that both the narrative style and the choice

of words adopted by business press accurately and consistently mirror the concerns of the

average investor. This assumption is intuitive and aligns with a conceptual framework in

which a news firm observes real-world events before deciding on the aspects to highlight in

its articles, aiming to enhance its credibility and reputation. Gentzkow and Shapiro (2006)

develops a theoretical model embodying this framework and provides various empirical vali-

dations supporting the model’s predictions. The idea that news media content reflects reader

WC > 200 or ns=M11 and WC > 200, where ”ns=M11” signifies that the articles belong to the subject of the
equity market. This search term in the Factiva database yields search results that are nearly identical to those
obtained from the ProQuest database.

4Manela and Moreira (2017) developed a monthly news-based implied volatility (NVIX) measure using
abstracts and headlines from front-page articles of the Wall Street Journal. NVIX can be downloaded from
Moreira’s website, while the monthly time series are available only till March 2016. We examine the pre-
dictability of NVIX on realized volatility and compare the results with Crash Narratives, which are available
upon request.
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interests is proposed by Tetlock (2007), with empirical corroboration found in Manela (2014)

and Manela and Moreira (2017), underscoring the role of media in capturing and conveying

the sentiment and concerns prevalent among investors.

When humans read text, their brains interpret words and extract meaning from the whole

context. According to Gentzkow et al. (2019), attempts to extract meaningful data from text

should likewise accommodate complex grammatical frameworks and the intricate interplay

among words. As high-dimensional semantic space models have the ability to uncover infor-

mation from highly unstructured data, we follow the Goetzmann et al. (2022)’s method and

detect the narrativity by estimating the semantic similarities within news articles using the

Doc2Vec model, introduced by Le and Mikolov (2014).

Doc2Vec contextualizes words, paragraphs, and documents through a neural network al-

gorithm: stochastic gradient descent where the gradient is obtained via backpropagation

(Rumelhart et al., 1986). It optimizes an objective function that aims to predict words based

on their surrounding context and the document they belong to. This process generates vectors

that capture semantic meanings of documents, allowing them to be quantitatively analyzed

and compared. Essentially, the model learns to represent documents in a way that similar

documents are closer in the vector space, facilitating various tasks such as predicting missing

words, assessing document similarity, and classifying documents according to high-order se-

mantics. The key advantage of this method over Bag-of-Words is its ability to use sequencing

and location information within a document.

While a comprehensive exploration of Doc2Vec exceeds the limitations of this paper, we

provide an intuitive overview of this method and its inherent structuring of data. Within the

Doc2Vec framework, every document is mapped to a unique vector, represented by a column

in matrix D; every word is mapped to a unique vector, represented by a column in a matrix

W. The column is indexed by position of the word in the vocabulary. Given a sequence of

training words w1, w2, w3, ..., wT , Doc2Vec maximizes the following objective:
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T

T−k∑
t=k

log p(wt|wt−k, . . . , wt+k, d) (1)

where p(wt|wt−k, . . . , wt+k) =
eywt∑
i e

yi
, and y = c+ U · h(wt−k, . . . , wt+k;W,D).

U and c are the parameters of the softmax function used to convert the raw scores into

probabilities. The function h represents the concatenation or averaging of word vectors ex-

tracted from W , and it captures the context provided by the words surrounding wt within a

window of size 2k. The vector d corresponds to the document vector from matrix D, which

helps to capture the overall context and thematic structure of the document in which the

word wt appears.

By jointly optimizing the word vectors in W and the document vectors in D, Doc2Vec is

able to learn distributed representations that capture both the syntactic and semantic rela-

tionships between words and documents, thereby providing a robust framework for various

downstream tasks such as similarity measurement.

Narratives that appear in the news in the days following the 1987 crash can be extracted

through the Doc2Vec model. This measure captures “Crash Narratives” in the media and

investors’ concerns about crashes in the stock market. Using the methodology described in

Goetzmann et al. (2022), we train the Doc2Vec model for the WSJ; and then generate a daily

series of average similarity scores derived from the model.

The construction of Crash Narratives involves four steps. Initially, we trained the Doc2Vec

model using all WSJ articles from 1987 to 20235. Following this, we compute the average

cosine similarity of each article to those published in the WSJ from October 20 to October

23, 1987. Taking into account the impacts of language evolution, which could potentially

obfuscate the narrative changes, we modify the similarity computations in the second step

based on the average cosine similarity of each article to articles published in the WSJ from

5The training process encompasses 100 iterations, based on a feature vector size of 250, a maximum distance
of 5, a minimum word frequency of 10 across all articles, a sub-sampling threshold of 10−5, and a negative
sample of 5.
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October 5 through October 9, 1987. The adjusted similarity is the discrepancy between the

natural logarithm of one plus the average cosine similarities. Lastly, we average these adjusted

similarity scores for articles from the same day. This is called Crash Narratives.

3.2 Summary Statistics

Table 2 presents the summary statistics of Crash Narratives and alternative predictors. The

daily Crash Narratives are calculated as the average of adjusted cosine similarities between the

WSJ stock market news articles published on a given day and those from October 20–23, 1987.

[Insert Table 2 here]

A Crash Narrativest = 0 indicates that the market sentiment expressed by the WSJ on a

given day shows no particular concern about a market crash, as the average cosine similarities

between stock market articles on day t and those during the 1987 Crash are identical to the av-

erage cosine similarities between stock market articles on day t and those from the benchmark

period (two weeks prior to the 1987 crash). The cosine similarities quantify not only word

choice but also language and semantic structure similarities. Articles with the same language

and semantic structure (that is, narrative) suggest that they describe the same events and

tell the same story. The marginally negative means (e.g., -0.48 for Crash Narratives) signify

that, on average, cosine similarities between stock market articles and those from the 1987

Crash are slightly lower compared to the cosine similarities between stock market articles and

those from the benchmark period.

An Crash Narrativest ≥ 1 means that the media perceive an increased likelihood of a

market crash, since the average cosine similarities between stock market articles on day t

and those during the 1987 crash are much higher compared to the average cosine similarities

between stock market articles on day t and those from the benchmark period, suggesting that

substantially stock market articles published on day t are more relevant to the 1987 crash

than with stories during the benchmark period. This is because articles with high adjusted

similarity scores are similar not only in word choice but also in semantic context to those
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published during crash periods. For example, the highest WSJ Crash Narrative score was

3.24 on July 31, 2011, when the financial markets were dominated by concerns about the US

debt ceiling crisis and the potential for a government default. The five largest Crash Narra-

tives were observed during the COVID-19 pandemic (March 17, 2020, the S&P 500 plunged

nearly 12%, one of its worst single-day losses since 1987’s Black Monday on March 16, 2020),

the Subprime Crisis (October 14, 2007, when the subprime mortgage market in the US was

collapsing, and October 12, 2008, the Dow Jones Industrial Average experienced one of its

largest single-week declines in history on October 10, 2008), and the European Sovereign Debt

Crisis (April 2, 2010, when Greece announced plans to seek European Union and International

Monetary Fund assistance to manage its sovereign debt crisis.

Conversely, a highly negative crash narrative value (Crash Narrativest ≤ −1) suggests that

most stock market news articles on that day are irrelevant to market crashes, and instead tell

stories considerably analogous to those from the benchmark period, thus a lower possibility

of market crash.

3.3 Time-series Properties

Notable peaks in Crash Narratives include the Subprime Crisis, the COVID-19 pandemic, and

other turbulent periods that we annotate in Figure 1. Stock market crashes, wars, significant

international political events, and financial crises play an important role in shaping Crash

Narratives. The spikes of Crash Narratives suggest that journalists have broadly employed

previous narratives used after the 1987 crash. Despite variations in context, they aim to alert

readers’ towards market crashes by recalling not only the previous crash events, but also the

fears during the crash periods.

[Insert Figure 1 here]

It is understandable that spikes in market crash concerns perceived by the average investor co-

incide with stock market crashes, world wars, significant political events, and financial crises.

As these are exactly the times when Crash Narratives’ spikes due to each of these fears, Crash

12



Narratives are reasonable proxies for investor’s market crash concerns.

We also plot alternative volatility predictors alongside US realized volatility in Figure 1.

Most predictors, excluding Macroeconomic Uncertainty Index, are highly volatile, with peaks

during the 2007–2008 financial crisis and the recent COVID-19 pandemic, similar to the pat-

tern observed in realized volatility. Notably, the most pronounced divergence between Left-

Tail Volatility and realized volatility occurs in the periods leading up to financial crises, such

as the Asian Financial Crisis and the Subprime Crisis. During these times, realized volatility,

Crash Narratives, and Equity Market Volatility begin to rise, whereas Left-Tail Volatility

remains low. Additionally, compared to Equity Market Volatility and Crash Narratives, the

two uncertainty measures (Economic Policy Uncertainty and Macroeconomic Uncertainty In-

dex) show less similarity to the RV pattern. Economic Policy Uncertainty is more sensitive

to political events than stock market events. In contrast, Macroeconomic Uncertainty Index

is smoother compared to realized volatility, as Jurado et al. (2015) explains that much of

the variability in the stock market is not driven by changes in genuine uncertainty across the

broader economy.

The heat map in Figure 2 shows the contemporaneous correlation matrix of monthly re-

alized volatility, VIX, Crash Narratives, and other predictors. As expected, Crash Narratives

are significantly and positively correlated with realized volatility. In particular, the correlation

between realized volatility and Crash Narratives (0.75) is higher than those between realized

volatility and Left Tail Volatility, Economic Policy Uncertainty, and Macroeconomic Uncer-

tainty Index (0.64, 0.41, and 0.55, respectively). Furthermore, the correlation between VIX

and Crash Narratives (0.77) is higher than between realized volatility and Crash Narratives,

suggesting the forward-looking nature of Crash Narratives, similar to VIX.

[Insert Figure 2 here]
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4 Crash Narratives Predict Realized Volatility

4.1 Predictive Regressions, Sub-Sample and Quantile Analysis

In this section, we test the hypothesis that the time variation in market crash concerns is an

important predictor of the variation in future equity market volatility. In addition, we per-

form subsample analysis, and use quantile regressions to consider distributions of volatility.

We examine the monthly predictability of Crash Narratives on realized volatility. The

monthly time series are obtained by averaging daily time series within a specific month. The

full sample period is June 1996 to December 2023.

We then compare the predictability of Crash Narratives with alternative predictors in

Table 1 and perform sub-sample comparisons. First, previous research has demonstrated

that the text-based measures - Economic Policy Uncertainty and Equity Market Volatility -

possess significant predictive power for market volatility (Fang et al., 2020; Li et al., 2023;

Ma et al., 2022, 2023; Su et al., 2017). Second, traditional measures of market fear are

widely recognized for their ability to predict future realized volatility. Bollerslev et al. (2015)

demonstrates that Left Tail Volatility, which is derived from the option surface and associated

with compensation for left jump tail risk, represents separate state variables that drive future

market volatility. Third, following Knightian’s definition and the early studies on uncertainty

by Bernanke (1983) and Dixit and Pindyck (1994), academics and practitioners have sought

to objectively quantify economic uncertainty, aiming to reflect the prevailing uncertainty in

the process of decision making by economic agents. Investors in financial markets, who are

concerned about uncertainty, respond by evoking a gradual slowdown or sometimes a sharp

decline in asset price returns. This response simultaneously leads to a spike in volatility

(Pástor and Veronesi, 2013), as several theoretical and empirical literature has shown that

stock market volatility is driven by uncertainty (Engle et al., 2013; Fisher et al., 2022; Jurado

et al., 2015; Paye, 2012). We apply two uncertainty measures: Economic Policy Uncertainty

and Macroeconomic Uncertainty Index.

We estimate Crash Narratives using the Doc2Vec model, which captures the semantic
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meanings of news articles. Our approach not only lets the data speak for itself, in contrast to

Economic Policy Uncertainty and Equity Market Volatility (they rely on the econometricians’

key words selection and judgment), but also relies on larger text corpus, the full text and all

news articles related to a stock market in the sample period, rather than comparing abstracts

and headlines of front-page articles used by the NVIX. These methodological advantages lead

us to hypothesize that Crash Narratives can capture distinct pieces of information. The

monthly realized volatility (RV) predictive regressions in the full sample and four subsamples

are shown as below:

RVt = β0 + β1Xt−1 + ϵt, (2)

where X ∈ [Crash Narratives, Left-Tail Volatility, Equity Market Volatility, Economic Policy

Uncertainty, Macroeconomic Uncertainty Index].

Stock market crashes are typically linked to significant and unforeseen spikes in market

volatility. To explore the likelihood of variations in the relationship between Crash Narratives

and market volatility across its distribution, we use a quantile regression approach. Therefore,

we are able to explore whether (or not) the predictability of Crash Narratives is most pro-

nounced for volatility at the highest quantile. This method was introduced by Koenker and

Bassett (1978) and is widely used to unravel the dependence structure between the financial

and economic variables. The monthly realized volatility (RV) quantile regressions are shown

as below:

QRVt(τ |Xt−1) = ϕ(τ) + λ(τ)Xt−1, (3)

where X ∈ [Crash Narratives, Left-Tail Volatility, Equity Market Volatility, Economic Policy

Uncertainty, Macroeconomic Uncertainty Index] and τ ∈ [0.1, 0.25, 0.5 0.75, 0.9], representing

10th, 25th, 50th, 75th and 90th quantile.
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4.2 Empirical Results

In this section, we report that Crash Narratives can predict future market volatility and out-

perform alternative text-based volatility measures, traditional tail risk measures, as well as

uncertainty measures. In the subsample analysis, we report the superior predictive power

of Crash Narratives is primarily due to their stronger performance during periods of high

volatility and NBER recession. Finally, we find that the predictive power of Crash Narratives

increases with higher quantiles, suggesting that Crash Narratives may amplify predictability

in more volatile periods.

[Insert Table 3 here]

The predictive results are presened in Table 3. The first column shows Crash Narratives

are statistically significant in forecasting realized volatility. In particular, Crash Narratives

exhibit the highest coefficient of 0.624 among all predictors, and a 1% increase in Crash Narra-

tives is associated with a subsequent 0.624% rise in realized volatility for the following month.

Whilst all of the predictors are significant, the regression of realized volatility on the lagged

Crash Narratives yield the highest adjusted R-squared value of 33.8%.

In addition, Crash Narratives exhibit higher adjusted R-squared compared to Equity Mar-

ket Volatility in forecasting realized volatility, supporting our hypothesis that Crash Narratives

provide more comprehensive information on future market volatility. 6 Left Tail Volatility has

the second lowest adjusted R-squared of 19.1%, approximately two-thirds of that of Crash

Narratives, indicating that our text-based measure of market crash concerns has stronger

predictive power compared to the traditional option-based tail risk measure. The two uncer-

tainty measures also exhibit much lower adjusted R-squared values, particularly the Economic

Policy Uncertainty, which is only 5.5%, demonstrating that policy uncertainty accounts for

a very small fraction of future volatility variance. Overall, these findings suggest that Crash

Narratives capture the largest portion of variance in future market volatility.

6Both Crash Narratives and Equity Market Volatility show a higher adjusted R-squared compared to NVIX,
consistent with explanations of Baker et al. (2021), who attribute Equity Market Volatility’s superior perfor-
mance to the advantage of using a much larger text corpus, which enhances volatility prediction.
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The second and third columns of Table 3 demonstrate that the stronger predictive power

of Crash Narratives, compared to alternative predictors, is primarily attributable to their

better performance during periods of high volatility. The adjusted R-squared values of Crash

Narratives are lower in the subsample that excludes NBER recession periods (fourth column)

compared to the full sample and higher in the NBER recession subsample (fifth column). In

contrast, the adjusted R-squared of Left Tail Volatility in the recession are lower compared to

the full sample. These results suggest that Crash Narratives capture more information about

future market volatility during recession periods, while Left Tail Volatility falls short.

Table 4 shows that the predictability of Crash Narratives in realized volatility varies across

different market volatility conditions. For example, the 90th quantile represents the upper

tail of the volatility distribution, where the volatility is at an extremely high level relative to

the overall sample; while 10th quantile represents the lower tail of the volatility distribution,

where the volatility is at a low level relative to the overall sample. Significant coefficients

for Crash Narratives are observed across all quantiles, with the pseudo-R2 increasing as the

quantiles rise. The pseudo-R2 value in the 90th quantile is double that of the 10th quan-

tile. This shows that Crash Narratives are considerably more effective in predicting market

volatility during periods of high volatility compared to periods of lower volatility. Crash Nar-

ratives have higher pseudo-R2 compared to other predictors at all quantiles. Compared to

the Left-Tail Volatility, the traditional option-based measure of market crash concerns, the

news-based Crash Narratives can capture more information about future realized volatility

according to the higher pseudo-R2 at all quantiles. It is also noteworthy that the pseudo-R2s

of the two uncertainty measures are much lower than the others, indicating that the politi-

cal and macroeconomic uncertainty play a less important role than financial market predictors.

[Insert Table 4 here]

These results suggest that market crash concerns transmit significantly from Crash Narratives

of media to the stock market, especially during high-volatility states or recession periods.

One would expect that during the post-financial crisis period, participants in the stock mar-

ket would pay considerable attention to sentiment expressed by financial news, the ups and
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downs of which are immediately reflected in Crash Narratives. Consequently, fluctuations in

market crash concerns conveyed by the major financial media can lead to significant changes

in the expected volatility of the stock market during periods of turmoil.

5 Applications of Crash Narratives’ Volatility Predictability

Understanding how market crash concerns affect market volatility is important for investors

when planning their portfolio strategies. Thus, in this section, we extend the predictability of

Crash Narratives to see if they offer a more accurate estimate of monthly Conditional Vari-

ance. We then examine whether these new measures can improve the predictability of the

variance risk premium, and volatility-managed portfolios’ performance.

The results in Section 4 show that Crash Narratives predict monthly realized volatility,

with their predictive power being particularly strong during periods of high volatility. This is

because Crash Narratives capture the state changes that lead to variations in market volatil-

ity in asset pricing models. In addition, Crash Narratives outperform alternative text-based

volatility measures and traditional market fear measures in forecasting market volatility. Mo-

tivated by these findings, we add Crash Narratives and traditional market fear measures to

the monthly Heterogeneous Autoregressive model (HAR) by Corsi (2009) and find that the

models with Crash Narratives produce a more accurate forecast of the Conditional Variance

compared to models without Crash Narratives. Section 5.1.1 introduces the HAR model, Sec-

tion 5.1.2 outlines the model evaluation procedure, and Section 5.1.3 presents the evaluation

results.

Subsequently, we construct portfolios that scale monthly returns by the inverse of their

conditional variance. These volatility-managed portfolios decrease risk exposure when the

conditional variance is high and vice versa. Crash Narratives-based trading strategies earn

the highest alphas among a group of volatility-managed portfolios. Section 5.2.1 describes the

construction of Volatility-Managed Portfolios, and Section 5.2.2 evaluates their performance.
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Finally, we estimate the variance risk premium, based on the conditional variance forecast

by a model with Crash Narratives. We find that our new proxy – which explicitly takes into

account market crash concerns – has superior forecasting power for short-term returns. Sec-

tion 5.3.1 introduces the variance risk premium and its calculation, and Section 5.3.2 provides

the predictive results of the variance risk premium on stock market returns.

5.1 Crash Narratives Improve Conditional Variance Forecast Accuracy

5.1.1 Conditional Variance Forecast Model

It is now generally accepted that direct time series models based on realized volatility strongly

outperform the popular GARCH and stochastic volatility models (Andersen et al., 2003; Chen

et al., 2012). A good example of these models is the Heterogeneous Autoregressive model pro-

posed by Corsi (2009). This model considers the volatility components realized over different

interval sizes. It is able to reproduce the same volatility persistence observed in the empirical

data as well as many of the other main stylized facts of financial data, while remaining par-

simonious and easy to estimate. 7

This model can be economically explained by the Heterogeneous Market Hypothesis by

Müller et al. (1999), which recognizes the presence of heterogeneity among traders. Typically,

a financial market consists of participants with a wide range of trading frequencies. The main

idea of the hypothesis is that participants with varying trading frequencies recognize, respond

to and generate different kinds of volatility components. To simplify, Corsi (2009) identify

three primary volatility components: short-term participants who trade daily or more fre-

quently, mid-term investors who usually adjust their portfolios weekly, and long-term market

players with holding periods of at least a month. Thus, the daily Heterogeneous Autoregres-

sive model has three heterogeneous volatility components, each of which is generated by the

actions of different types of market participants.

7The autocorrelations of squared returns exhibit strong persistence that spans long periods (months). Re-
turn distributions across different time horizons display fat tails and tail crossover, meaning that return prob-
ability density functions exhibit leptokurtosis with shapes dependent on the time scale, and they converge
to a normal distribution very slowly as time scales lengthen. Financial data also show signs of scaling and
multiscaling. Conventional GARCH and stochastic volatility models fail to capture all of these characteristics.
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The simplicity of the forecasting model of Corsi (2009) allows it to be easily extended in

various directions. Other statistically and economically significant variables could be simply

added as additional regressors. For example, Bekaert and Hoerova (2014) add VIX as a pre-

dictive variable in the HAR model, motivated by the finding that option prices as reflected in

implied volatility should have information about future stock market volatility (Christensen

and Prabhala, 1998. They evaluated a wide variety of state-of-the-art volatility forecasting

models and found that one of the winning models is the HAR model supplemented with the

squared VIX.

Following findings in Section 4.2 and the benefits of the Heterogeneous Autoregressive

model, we extend the monthly HAR model by including exogenous predictive variables, such

as Crash Narratives, Equity Market Volatility, Left Tail Volatility, Economic Policy Uncer-

tainty, Macroeconomic Uncertainty Index, which we call the HAR-X model.

First, we estimate the monthly HAR-X model for each predictor variable one at a time,

with lags of four horizons of the variable (one-, three-, six-, and twelve-month) to determine

how many horizons are included in the subsequent analysis. Since the parameters of the 3-,

6- and 12-month horizons for all variables are insignificant, we only include the one-month

lag in the subsequent analysis.

Model 1 is the monthly HAR model. Model 2 adds Crash Narratives in Model 1, respec-

tively. Model 3 adds Left Tail Volatility in Model 1. Model 4 incorporates the news-based

Equity Market Volatility into Model 1. Model 5 and 6 include two additional uncertainty

measures: Economic Policy Uncertainty and Macroeconomic Uncertainty Index, respectively,

to Model 1. Our general forecasting model can be represented as follows:

RV 2
t = c0 + c1RV 2

t−1 + c2Xt−1 + εt, (4)
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where

X ∈



Crash Narratives,

Left Tail Volatility,

Equity Market Volatility,

Economic Policy Uncertainty,

Macroeconomic Uncertainty Index


.

The monthly realized variance, RV 2
t , is calculated as the sum of the squared daily SP500

returns within a month, with returns presented as percentages.

Estimation noise is widely recognized to negatively affect out-of-sample forecast accuracy.

Consequently, simpler models, such as the martingale model, might perform better than more

complex models. Therefore, we also consider a non-estimated model: the lagged realized vari-

ance (Model 7, the model used in Bollerslev et al. (2009)). Subsequently, we evaluate multiple

forecasting models to select the model with the best forecasting performance.

5.1.2 Model Evaluation Procedure

The model evaluation procedure involves assessing the in-sample and out-of-sample forecasting

performance of the seven models. We estimate all models by using Ordinary Least Squares re-

gressions with heteroskedasticity-consistent standard errors, following Newey and West (1987)

8 using monthly data from June 1996 to December 2023. We use standardized predictor vari-

ables (divided by standard deviation) to make the estimated coefficients comparable.

We report a number of metrics for a comparison of the in-sample predictions of the mod-

els, including: adjusted R-squared, the Bayesian Information Criterion (BIC), the F-test and

Wald test. The F-test and Wald test are used to analyze the contribution of exogenous pre-

dictors, compared with only including RV 2
t−1.

8We use 3 lags for both the monthly in-sample and out-of-sample analysis. In general, the results are robust
to the choice of lags.
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The out-of-sample forecasts for the various conditional variance models are based on a

rolling estimate window of 120 months. We also compare the out-of-sample predictions of

the models with the non-estimated model. To quantify out-of-sample forecast accuracy, we

apply two different criteria: The Root Mean Square Error (RMSE), the Mean Absolute Error

(MAE). Comparative analysis of forecast error measures across different models is performed

using the Diebold and Mariano (1995) test. We apply this test to examine whether the RMSE

and MAE of the estimated models vary significantly from those of the non-estimated model

(Model 7). Table 5 presents the performance statistics for seven models according to the

criteria discussed above.

5.1.3 Model Evaluation Results

The first four columns in Table 5 display the in-sample estimation results for the seven es-

timated models. The results show that including Crash Narratives significantly increases

the predictive power of the HAR model, as evidenced by the significant F-test and Wald

test statistics for Model 2. By comparing the adjusted R-squared and BIC values from the

in-sample estimations, it is clear that adding Crash Narratives to the HAR model is more

beneficial than incorporating Left Tail Volatility, news-based Equity Market Volatility and

Economic Policy Uncertainty. For example, the adjusted R-squared increases from 42.9% in

the HAR model to 43.8% in the model that includes Crash Narratives.

[Insert Table 5 here]

The final two columns in Table 5 presents the out-of-sample results for predicting monthly

conditional variance. Models incorporating Crash Narratives (Model 2) outperform the other

six models, as evidenced by the lowest out-of-sample RMSE and MAE values. The results

of the DM-test show that models with Crash Narratives produce significantly lower MAE

compared to the non-estimated model (the lagged realized variance). This improvement in

forecasting performance indicates that integrating Crash Narratives into the model markedly

improves the accuracy of conditional variance predictions. It is noteworthy that while the

Macroeconomic Uncertainty Index shows good in-sample results, its out-of-sample perfor-

mance is the worst, indicating that the Macroeconomic Uncertainty Index fails to provide
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predictive information for the conditional variance beyond the sample. In conclusion, both

in-sample and out-of-sample analysis demonstrate that Crash Narratives are more effective in

predicting the US stock market conditional variance at the monthly frequency.

5.2 Crash Narratives Enhance Performance of Volatility-Managed Portfo-

lio

5.2.1 Construction of Volatility-Managed Portfolios

Research on volatility-managed portfolios has surged in recent years. These strategies typ-

ically involve taking conservative positions on the underlying factors during periods of high

volatility and adopting more aggressively leveraged positions when volatility is low. Several

papers document that this simple trading strategy produces large alphas and Sharpe ratios

across a wide range of asset pricing factors, and investors can benefit from volatility timing

(Barroso and Santa-Clara, 2015; Božović, 2024; Daniel and Moskowitz, 2016; Moreira and

Muir, 2017; Wang and Yan, 2021).

The high Sharpe ratios observed in volatility timing strategies can be attributed to the

fact that changes in volatility are not offset by corresponding changes in expected returns.

In other words, given that variance is highly predictable at short horizons and that variance

predictions have a weak correlation to future returns over these horizons, a standard mean-

variance investor should time volatility. Specifically, they should take more risks when the

mean-variance trade-off is attractive ( volatility is low), and take less risk when the mean-

variance trade-off is unattractive (volatility is high).

Moreira and Muir (2017) show that the performance of volatility-managed portfolio can

be further improved through the use of more sophisticated models of variance forecasting.

In Section 5.1, we demonstrate that integrating Crash Narratives into the Heterogeneous

Autoregressive model markedly improves the accuracy of Conditional Variance predictions.

As a result, in this section, we hypothesize that volatility-managed SP500 portfolios based

on Crash Narratives exhibit better performance compared to traditional volatility-managed

portfolios.
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We follow the method of Moreira and Muir (2017) and construct our volatility-managed

SP500 portfolio by scaling an excess return by the inverse of its conditional variance. On a

monthly basis, our strategy increases or decreases risk exposure to the portfolio according to

the variation in our measure of conditional variance. The managed portfolio is:

SP500σt =
c

CVt−1
SP500t, (5)

where SP500t is the buy-and-hold SP500 portfolio’s excess return, CVt is a SP500’s condi-

tional variance, and the constant c controls the average exposure of the strategy. We set c

such that the unconditional standard deviation of the managed portfolio is equal to that of

the buy-and-hold portfolio. This means that c can be obtained from:

σ2

(
SP500t
CVt−1

c

)
= σ2(SP500t) ⇔ c =

σ(SP500t)

σ(SP500/CVt−1)
(6)

To test the hypothesis, we use the conditional variance based on the seven different fore-

casting models in Section 5.1: the Heterogeneous Autoregressive model (HAR, Model 1), the

HAR model supplemented with Crash Narratives (Model 2), the HAR model with Left Tail

Volatility (Model 3), the HAR model with the news-based Equity Market Volatility (Model 4),

the HAR model with Economic Policy Uncertainty (Model 5), the HAR model with Macroe-

conomic Uncertainty Index (Model 6), and the non-estimated model that uses the realized

variance in the preceding month as the conditional variance (Model 7), which is the condi-

tional variance used in (Moreira and Muir, 2017).

We evaluate the performance of volatility-managed portfolios using three approaches.

First, we plot the cumulative nominal returns of the volatility-managed SP500 portfolios, and

compare them to the buy-and-hold strategy from 2006 to 2024. Second, we run a monthly

time-series regression of the volatility-managed SP500 portfolio on the original portfolio:

SP500σt = α+ βSP500t + εt. (7)
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A positive intercept (α) implies that volatility timing increases Sharpe ratios relative to the

original portfolio. Third, we calculate the annualized Sharpe ratios.

5.2.2 Performance of Volatility-Managed Portfolios

The top panel of Figure 3 shows the cumulative nominal returns of the volatility-managed

S&P 500 portfolios compared to the buy-and-hold strategy from 2006 to 2023. We begin with

an investment of $1 in 2006 and plot the cumulative returns of each strategy on a logarithmic

scale. The volatility-managed S&P 500 portfolios exhibit relatively steady gains. By the end

of the sample period, the volatility-managed S&P 500 portfolios, on the basis of the condi-

tional variance estimated from Crash Narratives, accumulates to approximately $15, versus

nearly $12 for the portfolio based on the conditional variance from Left-Tail Volatility, around

$9 for the portfolio based on realized variance from the preceding month, and about $3 for

the buy-and-hold strategy.

[Insert Figure 3 here]

The lower panel of Figure 3 plot the drawdown of the strategies. The drawdown is calcu-

lated as the relative deviation of the cumulative return from its historical maximum, and

quantifies the extent of a decline from the peak value of the cumulative return over time, pro-

viding insights into downside risk. Our strategies tend to assume relatively more risk when

volatility is low, such as in 2022, resulting in some losses during these periods. Conversely,

significant market losses generally occur when volatility is high, such as during the 2008 fi-

nancial crisis, the euro crisis, and the China stock market turmoil, which our strategies tend

to avoid. Notably, by incorporating market crash concerns conveyed by financial newspapers,

the strategies based on Crash Narratives further focus on reducing risk during market crash

periods. Consequently, our Crash Narratives-based strategies incur the least losses during

these periods. This outcome demonstrates that our strategy operates by adjusting the timing

of market risk exposure and mitigating losses during market crashes, rather than capitalizing

on extreme market conditions as profitable option strategies often do.
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[Insert Table 6 here]

Table 6 reports results from conducting a regression of the volatility-managed SP500 portfolio

on the original SP500 portfolio. We note positive, statistically significant intercepts (α’s) for

all seven volatility-managed portfolios. The scaled SP500 portfolio based on the conditional

variance forecast by the model with Crash Narratives (Model 2), SP500σCrash Narratives , has the

highest annualized alpha of 10.70%.

Similarly, the annualized Sharpe ratios of SP500σCrash Narratives are significantly higher than

that of SP500σRV as evidenced by the Jobson and Korkie (1981) test and also higher than

the annualized Sharpe ratios of the other volatility-managed portfolios. These results demon-

strate that volatility forecasting models with Crash Narratives better predict future stock

volatility compared to other predictors from the perspectives of volatility-managed portfolio.

5.3 Crash Narratives Boost Return Predictability of the Variance Risk

Premium

5.3.1 Variance Risk Premium

There are two main hypotheses regarding the sources of the magnitude and variation of asset

prices. The first hypothesis, explored in one body of literature, examines the role of cash

flow volatility dynamics as a determinant of equity premiums in both the time series and

cross section (Bansal and Yaron, 2004; Wu, 2001). A different body of literature has explored

shocks to investors’ preferences as drivers of equity prices (Abel, 1990, 1999; Bekaert et al.,

2010; Brandt and Wang, 2003; Campbell and Cochrane, 1999; Menzly et al., 2004). In the

consumption-based asset pricing model of Campbell and Cochrane (1999), risk aversion drives

time-variation in the equity risk premium. Bekaert et al. (2009) develop a theoretical model

and empirical strategy that can accommodate both hypotheses, and they use an optimal

GMM estimation to assess the relative importance of each. Their findings indicate that both

the conditional volatility of cash flow growth and time-varying risk aversion are significant

factors driving the variation in the equity risk premium and the conditional volatility of re-

turns. They conclude that cash flow volatility plays a more important role in volatility, while
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risk aversion is more crucial for the equity risk premium.

One simple candidate indicator for risk aversion is the Variance Risk Premium, defined as

the difference between the squared VIX index and an estimate of the conditional variance of

the stock market.

V RPt = V IX2
t − CVt (8)

CVt = Et[RV 2
t+1] (9)

, where the VIX is the implied option volatility of the S&P500 index for contracts with a ma-

turity of one month, and RV 2
t+1 is the S&P500 realized variance measured over the next month.

Economically, the squared VIX is the conditional return variance when using a ”risk-

neutral” probability measure, while the conditional variance is based on the ”physical” prob-

ability measure. The risk-adjusted measure moves probability to states with higher marginal

utility (bad states), which implies that in many realistic economic settings, the variance risk

premium will be higher with increased risk aversion in the economy. Generally, the Vari-

ance Risk Premium utilizes objective financial market information and naturally ”cleanses”

option-implied volatility from the effect of physical volatility dynamics and uncertainty, leav-

ing a measure associated with risk aversion. Hence, it always serves as an indicator of risk

aversion.

A series of studies have shown that the variance risk premium can predict stock market

returns, as it is ascribed to non-Gaussian elements in fundamental factors and (stochastic) risk

aversion in financial models (Bekaert and Hoerova, 2014; Bollerslev et al., 2009, 2012, 2014;

Carr and Wu, 2009; Goyal and Saretto, 2009). Building on our enhanced conditional variance

metrics for stock market returns in Section 5.1, we examine the proposition that Variance

Risk Premium contains critical information on equity risk premia in univariate regressions.

We estimate the Variance Risk Premium with various conditional variance forecast models

in Section 5.1). We start with univariate regressions using the Variance Risk Premium as a
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predictor of equity returns, utilizing monthly average observations. The dependent variable is

the S&P500 excess stock returns (the S&P500 return in excess of the three-month T-bill rate).

We explore one-month forecasting horizons. The use of overlapping monthly data introduces

serial correlation in the residuals that are corrected to create standard errors.

5.3.2 Stock Market Return Prediction Results

Table 7 presents the regression results. First, the coefficients of the Variance Risk Premium

(VRP) estimated from Models 1-5 are significantly positive, indicating that VRP has predic-

tive power for future stock returns over a one-month horizon. Second, VRPs based on Crash

Narratives and Left Tail Volatility show higher adjusted R-squared values compared to the

VRP based on Economic Policy Uncertainty, indicating that the left-tail measure plays a more

important role in capturing risk aversion through the VRP. Third, the adjusted R-squared of

the VRP based on the Macroeconomic Uncertainty Index is insignificant, which aligns with

its poor out-of-sample predictive performance discussed in Section 5.1. These findings sug-

gest that our new VRPs, generated from Crash Narratives conditional variance forecasting

models, better predict the aggregated equity return compared to the non-estimated model.

This demonstrates that volatility forecasting models with Crash Narratives successfully pre-

dict future stock volatility from the perspectives of VRP and return predictability.

[Insert Table 7 here]

Overall, the superior forecasting power of variance risk premium based on Crash Narratives

suggests that incorporating Crash Narratives creates a more accurate estimate of Variance

Risk Premium. The strong predictability of variance risk premium supports the asset pricing

model by Campbell and Cochrane (1999) and Bekaert et al. (2009), which attributes variation

in equity risk premiums to counter-cyclical changes in risk aversion. These models appear

increasingly plausible as the true economic mechanism explaining time-variation in equity risk

premiums.
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6 Conclusion

We use the text-based method proposed by Goetzmann et al. (2022), to develop a measure of

market crash concerns–Crash Narratives–derived from the Wall Street Journal news articles.

Crash Narratives exhibit a substantial increase following stock market crashes, wars, major

international political events, and financial crises, reflecting their sensitivity to global events.

This suggests that Crash Narratives are good proxies for market crash concerns.

We find that Crash Narratives predict US realized volatility. Importantly, three key pieces

of evidence suggest the strong predictability of Crash Narratives in market volatility. First,

the results of predictive regressions and subsample analysis demonstrate that crash narratives

outperform alternative text-based volatility measures, traditional tail risk measures, as well

as uncertainty measures mainly due to their stronger predictability during periods of high

volatility and NBER recessions. Second, integrating Crash Narratives into the Heterogeneous

Autoregressive model significantly improves both the in-sample and out-of-sample forecast

accuracy of Conditional Variance. Third, Crash Narrative-based trading strategies earn the

highest cumulative returns and Sharpe ratios among a group of volatility-managed portfolios.

Finally, variance risk premium measures, which are based on Crash Narratives, have higher

predictive power for future stock market returns, compared to previous measures. This rein-

forces our findings that volatility forecasting models with Crash Narratives can successfully

predict future stock volatility from the perspectives of variance risk premium and return pre-

dictability. The robust predictability of the variance risk premium also corroborates the asset

pricing theory proposed by Campbell and Cochrane (1999), which links fluctuations in equity

risk premiums to counter-cyclical shifts in risk aversion.
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Figure 1: Crash Narratives, Alternative Volatility Predictors and Realized Volatility

The figure displays monthly averages of Crash Narratives, monthly Equity Market Volatility (EMV), Left
Tail Volatility (LTV), Economic Policy Uncertainty (EPU), Macroeconomic Uncertainty Index (MUI), and
monthly Realized Volatility from June 1996 through December 2023. Crash Narratives are the cosine
similarities of the Wall Street Journal news articles published on day t with those published between October
20–23, 1987 minus the cosine similarity with those published between October 5–9, 1987. All measures are
standard normalized. The shaded areas highlight the periods associated with significant events that lead to
the spikes of crash narratives.
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Figure 2: Correlation among Crash Narratives, Alternative Volatility Predictors and Market Volatility

The heat map displays monthly contemporaneous correlations of Realized Volatility (RV), VIX, Crash
Narratives, Equity Market Volatility (EMV) Left Tail Volatility (LTV), Economic Policy Uncertainty (EPU)
and Macroeconomic Uncertainty Index (MUI).

31



Figure 3: Cumulative Returns of the Volatility-Managed SP500 Portfolios

The top panel plots the cumulative returns to a buy-and-hold strategy versus three volatility-managed
strategies for the SP500 portfolio from 2006 to 2023. Volatility Managed Portfolio (Crash Narratives) is the
volatility-managed S&P 500 portfolio based on the conditional variance estimated from Crash Narratives.
Volatility Managed Portfolio (LTV) is the portfolio based on the conditional variance estimated from Left-Tail
Volatility. Volatility Managed Portfolio (Non Estimated) is the portfolio based on realized variance from
the preceding month, the method used in Moreira and Muir (2017). The y-axis is on a log scale and all
strategies have the same unconditional monthly standard deviation. The log scale is used to normalize
returns, allowing for proportional comparisons across strategies and making compounded growth appear
linear for clearer visualization of performance trends. The lower panel shows the drawdown of each strategy,
drawdown = cumulative returnexpanding maximum

expanding maximum
+ 1, where the expanding maximum is the highest cumulative

return achieved at any time prior to or at a specific date.
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Table 1: Descriptions of Alternative Volatility Predictors

Predictor: Description: Source:
Text-based volatility measures:
Equity Market Volatility This index is constructed by using scaled fre-

quency counts of newspaper articles that contain se-
lected terms: “economic”, “economy” or ”financial”;
”Stock Market”, ”equity”, ”equities”, or “Standard
and Poors”; ”Volatility” ”volatile”, ”uncertain”,
”uncertainty”, ”risk”, or ”risky”.

Baker et al. (2021)

Tail-risk measure:
Left-Tail Volatility This index measures the expected volatility due to a

ten-standard deviation, or larger, down move in the
SP500 Index over one week. It provides market par-
ticipants with access to a robust tail risk measure es-
timating the expected (risk-neutral) return volatility
stemming from large negative price moves over short
horizons.

Bollerslev et al. (2015)

Economic uncertainty measures
Economic Policy Uncertainty This index reflects the frequency of articles in 10

leading U.S. newspapers that contain the follow-
ing terms: ”economic” or ”economy”; ”uncertain”
or ”uncertainty”; and one or more of ”Congress”,
”deficit”, ”Federal Reserve”, ”legislation”, ”regula-
tion”, or ”White House”.

Baker et al. (2016)

Macroeconomic Uncertainty Index This index is defined as the common component in
the time-varying volatilities of h-step ahead forecast
errors obtained from a vector autoregressive model
with a large number of macroeconomic series that
include variables from three categories: real activity,
price, and financial, following the method of Jurado
et al. (2015).

Ludvigson et al. (2021)

This table displays detailed descriptions and sources of alternative volatility predictors.

Table 2: Summary Statistics of Crash Narratives and Alternative Volatility Predictors

mean std min 25% 50% 75% max
Crash Narratives -0.483 0.578 -3.252 -0.854 -0.542 0.195 3.244
Left Tail Volatility 8.60 3.67 0.385 6.39 7.69 9.96 41.6
Equity Market Volatility 19.9 7.97 8.03 14.9 17.9 22.3 69.8
Economic Policy Uncertainty 115 39.2 57.2 88.1 108 133 350
Macroeconomic Uncertainty Index 65.3 10.5 52.6 58.4 62.5 68.1 121.8

This table displays summary statistics of Crash Narratives, Equity Market Volatility (EMV) Left Tail Volatility
(LTV), Economic Policy Uncertainty (EPU) and Macroeconomic Uncertainty Index (MUI). Crash Narratives (CN)
are the cosine similarities of the Wall Street Journal news articles published on day t with those published between
October 20–23, 1987 minus the cosine similarity with those published between October 5–9, 1987. The alternative
volatility predictors are all expressed as index levels in percentages.
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Table 3: Crash Narratives Predict Realized Volatility

Dependent Variable: RVt+1

Sample: Full High RV Low RV Excl. Recession Recession
CN β1 0.624∗∗∗ 0.545∗∗∗ 0.032 0.517∗∗∗ 0.728∗∗

tnw 6.462 4.081 1.250 8.199 2.577
Adj. R2(%) 33.8 26.2 0.3 20.0 31.6

LTV β1 0.544∗∗∗ 0.435∗∗∗ 0.026 0.426∗∗∗ 0.486∗∗∗

tnw 5.596 4.112 0.915 5.604 3.925
Adj. R2(%) 19.1 13.7 0.1 11.6 17.3

EMV β1 0.587∗∗∗ 0.462∗∗∗ 0.055 0.452∗∗∗ 0.684∗∗∗

tnw 5.843 3.396 1.511 9.046 3.893
Adj. R2(%) 31.7 22.3 1.9 20.0 38.0

EPU β1 0.227∗∗∗ 0.297∗∗∗ 0.011 0.130∗∗ 0.510∗

tnw 2.700 2.607 0.703 2.106 1.819
Adj. R2(%) 5.5 8.7 0.1 2.3 10.3

MUI β1 0.421∗∗∗ 0.418∗∗∗ 0.026 0.225∗∗ 0.776∗∗∗

tnw 3.317 3.066 1.222 2.418 2.896
Adj. R2(%) 21.0 22.0 0.3 5.6 40.9

No. Obs. 330 165 165 302 28

Reported are monthly Realized Volatility (RV) predictive regressions in the full sample and four subsamples: RVt =
β0 + β1Xt−1 + ϵt, where X ∈ [CN, LTV, EMV, EPU, MUI]. CN represents Crash Narratives from the Wall Street
Journal. LTV is the Left-Tail Volatility. Other text-based volatility measures include Equity Market Volatility
(EMV), and Economic Policy Uncertainty (EPU). MUI is the macroeconomic uncertainty index. The full sample
period is June 1996-December 2023. High RV periods are months when RV is higher than the median. Low RV
periods are months when RV is lower than the median. Recessions are defined by NBER business cycles. Each row
and column represent a different univariate regression based on various predictors. tnw is Newey and West corrected
t-statistics with number of lags equal to the size of the volatility forecasting window. ∗, ∗∗, and ∗∗∗indicate 10%,
5%, and 1% significance levels.
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Table 4: Crash Narratives predict Realized Volatility (Quantile Regression)

Dependent Variable: RVt+1

Quantile: Q(0.1) Q(0.25) Q(0.5) Q(0.75) Q(0.9)
CN λ 0.292∗∗∗ 0.338∗∗∗ 0.549∗∗∗ 0.669∗∗∗ 0.916∗∗∗

t 8.195 9.381 13.79 12.92 6.306
Pseudo R2(%) 6.9 12.9 19.6 24.4 27.6

LTV λ 0.255∗∗∗ 0.307∗∗∗ 0.497∗∗∗ 0.624∗∗∗ 0.694∗∗∗

t 8.110 7.785 9.614 6.675 3.786
Pseudo R2(%) 5.4 7.7 11.7 13.2 16.3

EMV λ 0.264∗∗∗ 0.375∗∗∗ 0.507∗∗∗ 0.809∗∗∗ 1.03∗∗∗

t 8.466 10.21 13.84 14.23 11.35
Pseudo R2(%) 10.5 15.2 19.5 21.2 25.7

EPU λ 0.033 0.054 0.141∗∗∗ 0.252∗∗∗ 0.322∗∗

t 0.971 1.394 3.040 4.292 2.452
Pseudo R2(%) 0.5 0.5 1.6 4.3 5.2

MUI λ 0.112∗∗∗ 0.235∗∗∗ 0.299∗∗∗ 0.448∗∗∗ 0.741∗∗∗

t 3.159 7.385 7.315 6.635 10.389
Pseudo R2(%) 2.2 5.3 8.0 10.8 17.4

No. Obs. 330 330 330 330 330

Reported are monthly Realized Volatility (RV) quantile regressions: QRVt (τ |Xt−1) = ϕ(τ) + λ(τ)Xt−1, where
X ∈ [CN, LTV, EMV, EPU, MUI]. CN represents Crash Narratives from the Wall Street Journal, and τ ∈
[0.1, 0.25, 0.50.75, 0.9]. LTV is the Left-Tail Volatility. Other text-based volatility measures include Equity Mar-
ket Volatility (EMV), and Economic Policy Uncertainty (EPU). MUI is the macroeconomic uncertainty index. Each
row and column represents a different regression. The sample period is June 1996-December 2023. The quantile
used are the 10th, 25th, 50th, 75th, and 90th percentiles, respectively. Pseudo R2 is a measure of goodness-of-fit
that compares the sum of absolute deviations of the fitted model to a null model, indicating how well the quantile
regression explains the variation in the dependent variable. t is t-statistics with number of lags equal to the size of
the volatility forecasting window. ∗, ∗∗, and ∗∗∗indicate 10%, 5%, and 1% significance levels.
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Table 5: Conditional Variance Forecasting Model Statistics

In-Sample Out-of-Sample
Forecasting Models Adj.R2(%) BIC F-test Wald-test RMSE MAE
Estimated Models

Model 1: HAR 42.9 1501.0 2.64 1.56∗∗

(0.95) (2.19)
Model 2: HAR + CN 43.8 1501.0 5.75∗∗ 4.66∗∗ 2.63 1.54∗∗

(0.98) (2.30)
Model 3: HAR + LTV 42.8 1506.4 0.43 0.19 2.64 1.55∗∗

(0.84) (2.00)
Model 4: HAR + EMV 43.0 1505.2 1.57 1.94 2.65 1.56∗∗

(0.90) (2.07)
Model 5: HAR + EPU 42.8 1506.8 0.05 0.08 2.66 1.59∗

(0.87) (1.83)
Model 6: HAR + MUI 44.8 1495.0 12.0∗∗∗ 3.96∗∗ 2.88 1.67

(-0.52) (0.69)
Non-estimated Model

Model 7: RV 2
t−1 2.83 1.71

This table shows the in-sample and out-of-sample statistics to evaluate performance of conditional variance forecasting
models. Model 1 is the monthly Heterogeneous Autoregressive model (HAR). Model 2 adds Crash Narratives (CN)
in Model 1. Model 3 adds LTV in Model 1. Left Tail Volatility (LTV) is an option-based tail risk measure. Model
4 adds EMV (Equity Market Volatility) in Model 1. Model 5 adds EPU (Economic Policy Uncertainty) in Model
1. Model 6 adds MUI (Macroeconomic Uncertainty Index) in Model 1. Model 7 is the non-estimated model. The
in-sample estimations are based on 331 monthly observations. The sample period is June 1996 to December 2023.
The in-sample statistics are adjusted R-squared, the Bayesian information criterion (BIC), the F-test and Wald-test
statistics compared to Model 1. The out-of-sample estimations are based on a 120-month rolling window with 211
out-of-sample observations. The overall sample period is June 1996 to December 2023. The out-of-sample statistics
are RMSE and MAE. We apply Diebold and Mariano test to examine whether the RMSE and MAE of the estimated
models are significantly different from those of the non-estimated model (Model 7). The Diebold and Mariano test
statistics are in parentheses. ∗, ∗∗, and ∗∗∗indicate 10%, 5%, and 1% significance levels.

Table 6: Performance of Volatility-Managed SP500 Portfolios

Dependent Variable: SP500σ

Forecasting Models: Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Conditional Variance: CVHAR CVCN CVLTV CVEMV CVEPU CVMUI CV

β 0.93∗∗∗ 0.90∗∗∗ 0.92∗∗∗ 0.93∗∗∗ 0.92∗∗∗ 0.90∗∗∗ 0.88∗∗∗

[0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03]
Alpha (α) 9.81∗∗∗ 10.09∗∗∗ 9.39∗∗∗ 9.85∗∗∗ 9.72∗∗∗ 9.54∗∗∗ 7.79∗∗∗

[1.47] [1.64] [1.49] [1.44] [1.48] [1.43] [1.82]
R2 0.85 0.81 0.85 0.86 0.85 0.80 0.77

Annualized Sharpe Ratio 0.95 0.98 0.92 0.95 0.94 0.92 0.81
zJK 1.53∗ 1.65∗∗ 1.24 1.60∗ 1.49∗ 1.25

In this table, we run time-series regressions of volatility-managed SP500 portfolio on the non-managed SP500 portfolio
SP500σt = α + βSP500t + εt. The managed SP500 portfolio, SP500σ , scales by the portfolio’s inverse conditional
variance estimated in Model 1-6: SP500σt = c

CVt−1
SP500t. CVHAR is the Conditional Variance estimated in Model 1

in Table 5. Similarly, CVCN is the Conditional Variance estimated in Model 2, where CN is Crash Narratives. CVLTV

is the Conditional Variance estimated in Model 3, LTV is Left Tail Volatility. CVEMV is the Conditional Variance
estimated in Model 4, where EMV is Equity Market Volatility. CVEPU is the Conditional Variance estimated in
Model 5, where EPU is Economic Policy Uncertainty. CVMUI is the Conditional Variance estimated in Model 6,
where MUI is Macroeconomic Uncertainty Index. CV is the Conditional Variance from the non-estimated Model
7. The data are monthly and the sample period is July 2006-December 2023. Standard errors are in parentheses.
SP500 portfolio’s excess returns are annualized in percent per year by multiplying monthly excess returns by 12.
zJK is the test stat of Jobson and Korkie (1981), to test for the difference of the Sharpe ratios of two investment
strategies. zJK tests whether the Sharpe ratios of Volatility Managed Portfolios based on estimated conditional
variances are significantly different from that of Volatility Managed Portfolio based on the realized variance in the
preceding month. ∗, ∗∗, and ∗∗∗indicate 10%, 5%, and 1% significance levels.
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Table 7: US Stock Return Univariate Predictions with Variance Risk Premium

Forecasting Models Dependent Variable: ret+1

(1) (2) (3) (4) (5) (6) (7)
Model 1: V RPHAR 0.277∗∗

[2.388]
Model 2: V RPCN 0.271∗∗

[2.101]
Model 3: V RPLTV 0.327∗∗

[2.569]
Model 4: V RPEMV 0.283∗∗

[2.512]
Model 5: V RPEPU 0.269∗∗

[2.271]
Model 6: V RPMUI 0.079

[0.913]
Model 7: V RP 0.127

[1.272]
Adj. R2(%) 3.6 3.6 4.1 3.8 3.2 1.0 1.6
No. Obs. 209 209 209 209 209 209 209

Reported are monthly stock return regressions based on the Variance Risk Premium (VRP):
ret+1 = a+ bV RPt + ut,t+1,. V RPt = V IX2

t − CVt. V RPHAR is based on the Conditional Variance esti-
mated in Model 1 in Table 5. Similarly, V RPCN is based on the Conditional Variance estimated in Model 2, where
CN is Crash Narratives. V RPLTV is based on the Conditional Variance estimated in Model 3, LTV is Left Tail
Volatility. V RPEMV is based on the Conditional Variance estimated in Model 4, where EMV is Equity Market
Volatility. V RPEPU is based on the Conditional Variance estimated in Model 5, where EPU is Economic Policy
Uncertainty. V RPMUI is based on the Conditional Variance estimated in Model 6, where MUI is Macroeconomic
Uncertainty Index. V RP is based on the Conditional Variance from the non-estimated Model 7. Each column
represents a different regression. The sample period is July 2006-December 2023. The standard errors reported in
brackets are computed using Newey-West lags. ∗, ∗∗, and ∗∗∗indicate 10%, 5%, and 1% significance levels.
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